Polynomial Preserving Diffusions on the Unit Ball

Martin Larsson
Department of Mathematics, ETH Zürich
joint work with Sergio Pulido

Imperial-ETH Workshop on Mathematical Finance
4 March 2015

Polynomial models in finance

Factor models

- Arbitrage-free pricing usually boils down to calculating conditional expectations:

$$
\operatorname{Price}(t)=\mathbb{E}\left[\operatorname{Payoff}(T) \mid \mathscr{F}_{t}\right]
$$

Factor models

- Arbitrage-free pricing usually boils down to calculating conditional expectations:

$$
\operatorname{Price}(t)=\mathbb{E}\left[\operatorname{Payoff}(T) \mid \mathscr{F}_{t}\right]
$$

- Factor model:

$$
\operatorname{Payoff}(T)=f\left(X_{T}\right)
$$

where X is a factor process, f is a deterministic function

Factor models

- Arbitrage-free pricing usually boils down to calculating conditional expectations:

$$
\operatorname{Price}(t)=\mathbb{E}\left[\operatorname{Payoff}(T) \mid \mathscr{F}_{t}\right]
$$

- Factor model:

$$
\operatorname{Payoff}(T)=f\left(X_{T}\right)
$$

where X is a factor process, f is a deterministic function

- Task: Find X and f to get tractable yet flexible class of models

Polynomial preserving diffusions

- Markov process X with state space $E \subseteq \mathbb{R}^{d}$
- (Extended) generator \mathscr{G} given by

$$
\mathscr{G} f(x)=b(x)^{\top} \nabla f(x)+\frac{1}{2} \operatorname{Tr}\left(a(x) \nabla^{2} f(x)\right)
$$

Polynomial preserving diffusions

- Markov process X with state space $E \subseteq \mathbb{R}^{d}$
- (Extended) generator \mathscr{G} given by

$$
\mathscr{G} f(x)=b(x)^{\top} \nabla f(x)+\frac{1}{2} \operatorname{Tr}\left(a(x) \nabla^{2} f(x)\right)
$$

Definition. X is called Polynomial Preserving (PP) if

$$
\mathscr{G} \operatorname{Pol}_{n}(E) \subseteq \operatorname{Pol}_{n}(E) \quad \text { for all } \quad n \in \mathbb{N}
$$

where $\operatorname{Pol}_{n}(E)=\{$ polynomials on E of degree $\leq n\}$.

Polynomial preserving diffusions

- Markov process X with state space $E \subseteq \mathbb{R}^{d}$
- (Extended) generator \mathscr{G} given by

$$
\mathscr{G} f(x)=b(x)^{\top} \nabla f(x)+\frac{1}{2} \operatorname{Tr}\left(a(x) \nabla^{2} f(x)\right)
$$

Definition. X is called Polynomial Preserving (PP) if

$$
\mathscr{G} \operatorname{Pol}_{n}(E) \subseteq \operatorname{Pol}_{n}(E) \quad \text { for all } \quad n \in \mathbb{N}
$$

where $\operatorname{Pol}_{n}(E)=\{$ polynomials on E of degree $\leq n\}$.

Lemma. X is (PP) if and only if

$$
b_{i} \in \operatorname{Pol}_{1}(E) \quad \text { and } \quad a_{i j} \in \operatorname{Pol}_{2}(E)
$$

Polynomial preserving diffusions

- By definition of (PP), \mathscr{G} restricts to an operator $\left.\mathscr{G}\right|_{\mathrm{Pol}_{n}(E)}$ on the finite-dimensional vector space $\operatorname{Pol}_{n}(E)$

Polynomial preserving diffusions

- By definition of (PP), \mathscr{G} restricts to an operator $\left.\mathscr{G}\right|_{\mathrm{Pol}_{n}(E)}$ on the finite-dimensional vector space $\operatorname{Pol}_{n}(E)$
- Let h_{1}, \ldots, h_{N} be a basis for $\operatorname{Pol}_{n}(E)$, write

$$
H(x)=\left(h_{1}(x), \ldots, h_{N}(x)\right)^{\top}
$$

Polynomial preserving diffusions

- By definition of (PP), \mathscr{G} restricts to an operator $\left.\mathscr{G}\right|_{\mathrm{Pol}_{n}(E)}$ on the finite-dimensional vector space $\operatorname{Pol}_{n}(E)$
- Let h_{1}, \ldots, h_{N} be a basis for $\operatorname{Pol}_{n}(E)$, write

$$
H(x)=\left(h_{1}(x), \ldots, h_{N}(x)\right)^{\top}
$$

- Coordinate representations:

$$
\begin{aligned}
p(x) & =H(x)^{\top} \vec{p} & & \vec{p} \in \mathbb{R}^{N} \\
\mathscr{G} p(x) & =H(x)^{\top} G \vec{p} & & G \in \mathbb{R}^{N \times N}
\end{aligned}
$$

Polynomial preserving diffusions

- By definition of (PP), \mathscr{G} restricts to an operator $\left.\mathscr{G}\right|_{\mathrm{Pol}_{n}(E)}$ on the finite-dimensional vector space $\operatorname{Pol}_{n}(E)$
- Let h_{1}, \ldots, h_{N} be a basis for $\operatorname{Pol}_{n}(E)$, write

$$
H(x)=\left(h_{1}(x), \ldots, h_{N}(x)\right)^{\top}
$$

- Coordinate representations:

$$
\begin{aligned}
p(x) & =H(x)^{\top} \vec{p} & & \vec{p} \in \mathbb{R}^{N} \\
\mathscr{G} p(x) & =H(x)^{\top} G \vec{p} & & G \in \mathbb{R}^{N \times N}
\end{aligned}
$$

- Key consequence:

$$
\begin{align*}
\mathbb{E}\left[p\left(X_{T}\right) \mid \mathscr{F}_{t}\right] & =e^{(T-t) G_{G}} p\left(X_{t}\right) \tag{formally}\\
& =H\left(X_{t}\right)^{\top} e^{(T-t) G} \vec{p}
\end{align*}
$$

Polynomial preserving diffusions

- By definition of (PP), \mathscr{G} restricts to an operator $\left.\mathscr{G}\right|_{\mathrm{Pol}_{n}(E)}$ on the finite-dimensional vector space $\operatorname{Pol}_{n}(E)$
- Let h_{1}, \ldots, h_{N} be a basis for $\operatorname{Pol}_{n}(E)$, write

$$
H(x)=\left(h_{1}(x), \ldots, h_{N}(x)\right)^{\top}
$$

- Coordinate representations:

$$
\begin{aligned}
p(x) & =H(x)^{\top} \vec{p} & & \vec{p} \in \mathbb{R}^{N} \\
\mathscr{G} p(x) & =H(x)^{\top} G \vec{p} & & G \in \mathbb{R}^{N \times N}
\end{aligned}
$$

- Key consequence:

$$
\begin{aligned}
\mathbb{E}\left[p\left(X_{T}\right) \mid \mathscr{F}_{t}\right] & =e^{(T-t) G_{G}} p\left(X_{t}\right) \\
& =H\left(X_{t}\right)^{\top} e^{(T-t) G} \vec{p}
\end{aligned}
$$

(formally)

- This only involves a matrix exponential as opposed to solving a PDE which leads to tractable pricing models

Polynomial preserving diffusions

Examples:

- Affine diffusions

Polynomial preserving diffusions

Examples:

- Affine diffusions
- Pearson diffusions (Forman and Sørensen, 2008), $E \subset \mathbb{R}$:

$$
\mathrm{d} X_{t}=\left(\beta+b X_{t}\right) \mathrm{d} t+\sqrt{\alpha+a X_{t}+A X_{t}^{2}} \mathrm{~d} W_{t}
$$

Polynomial preserving diffusions

Examples:

- Affine diffusions
- Pearson diffusions (Forman and Sørensen, 2008), $E \subset \mathbb{R}$:

$$
\mathrm{d} X_{t}=\left(\beta+b X_{t}\right) \mathrm{d} t+\sqrt{\alpha+a X_{t}+A X_{t}^{2}} \mathrm{~d} W_{t}
$$

More generally:

- Existence theory for polynomial preserving diffusions is available when E is a basic closed semialgebraic set:

$$
E=\left\{x \in \mathbb{R}^{d}: p_{1}(x) \geq 0, \ldots, p_{m}(x) \geq 0\right\}
$$

where $p_{1}, \ldots, p_{m} \in \operatorname{Pol}\left(\mathbb{R}^{d}\right)$. See Filipović \& L. (2014).

Literature

- Wong (1964)
- Mazet (1997)
- Zhou (2003)
- Forman and Sørensen (2008)
- Cuchiero, Keller-Ressel, Teichmann (2012)
- Filipović, Gourier, Mancini (2013)
- Filipović, L. (2014)
- Bakry, Orevkov, Zani (2014)
- Filipović, L., Trolle (2014)
(PP) diffusions on the unit ball

The role of the state space

- The geometry of the state space restricts factor dynamics

The role of the state space

- The geometry of the state space restricts factor dynamics

Example. Affine diffusions on $E=\mathbb{R}_{+}^{d}$:

$$
d X_{t}=\left(b+B X_{t}\right) d t+\left(\begin{array}{cccc}
\sigma_{1} \sqrt{X_{1 t}} & 0 & \cdots & 0 \\
0 & \sigma_{2} \sqrt{X_{2 t}} & & \vdots \\
\vdots & & \ddots & 0 \\
0 & \cdots & 0 & \sigma_{d} \sqrt{X_{d t}}
\end{array}\right) d W_{t}
$$

Geometry of E forces $\left\langle X_{i}, X_{j}\right\rangle \equiv 0$ for $i \neq j$.

The role of the state space

- The geometry of the state space restricts factor dynamics

Example. Affine diffusions on $E=\mathbb{R}_{+}^{d}$:

$$
d X_{t}=\left(b+B X_{t}\right) d t+\left(\begin{array}{cccc}
\sigma_{1} \sqrt{X_{1 t}} & 0 & \cdots & 0 \\
0 & \sigma_{2} \sqrt{X_{2 t}} & & \vdots \\
\vdots & & \ddots & 0 \\
0 & \cdots & 0 & \sigma_{d} \sqrt{X_{d t}}
\end{array}\right) d W_{t}
$$

Geometry of E forces $\left\langle X_{i}, X_{j}\right\rangle \equiv 0$ for $i \neq j$.

- Compact state spaces useful for polynomial approximation

The role of the state space

- The geometry of the state space restricts factor dynamics

Example. Affine diffusions on $E=\mathbb{R}_{+}^{d}$:

$$
d X_{t}=\left(b+B X_{t}\right) d t+\left(\begin{array}{cccc}
\sigma_{1} \sqrt{X_{1 t}} & 0 & \cdots & 0 \\
0 & \sigma_{2} \sqrt{X_{2 t}} & & \vdots \\
\vdots & & \ddots & 0 \\
0 & \cdots & 0 & \sigma_{d} \sqrt{X_{d t}}
\end{array}\right) d W_{t}
$$

Geometry of E forces $\left\langle X_{i}, X_{j}\right\rangle \equiv 0$ for $i \neq j$.

- Compact state spaces useful for polynomial approximation

Theorem. If E is compact and X is an E-valued affine diffusion, then X is deterministic.

PP diffusions on the unit ball

Example.

$$
d X_{t}=-X_{t} d t+\sqrt{1-\left\|X_{t}\right\|^{2}} d W_{t}
$$

where $W=\left(W^{1}, \ldots, W^{d}\right)$ is d-dimensional BM.

PP diffusions on the unit ball

Example.

$$
d X_{t}=-X_{t} d t+\sqrt{1-\left\|X_{t}\right\|^{2}} d W_{t}
$$

where $W=\left(W^{1}, \ldots, W^{d}\right)$ is d-dimensional BM.

But richer diffusion dynamics is possible:

PP diffusions on the unit ball

Theorem. X is a PP diffusion on the unit ball if and only if

$$
b(x)=b+B x \quad \text { and } \quad a(x)=\left(1-\|x\|^{2}\right) \alpha+c(x)
$$

for some $b \in \mathbb{R}^{d}, B \in \mathbb{R}^{d \times d}, \alpha \in \mathbb{S}_{+}^{d}$, and $c \in \mathscr{C}_{+}$such that

$$
b^{\top} x+x^{\top} B x+\frac{1}{2} \operatorname{Tr}(c(x)) \leq 0 \quad \text { for all } \quad x \in \mathscr{S}^{d-1} .
$$

Here \mathscr{S}^{d-1} is the unit sphere in \mathbb{R}^{d}, and

$$
\mathscr{C}_{+}=\left\{c: \mathbb{R}^{d} \rightarrow \mathbb{S}^{d}: \begin{array}{l}
c_{i j} \in \operatorname{Hom}_{2} \text { for all } i, j \\
c(x) x \equiv 0 \\
c(x) \in \mathbb{S}_{+}^{d} \text { for all } x
\end{array}\right\}
$$

The set \mathscr{C}_{+}

$$
\mathscr{C}_{+}=\left\{\begin{array}{ll}
\left.\left.\left.c: \mathbb{R}^{d} \rightarrow \mathbb{S}^{d}: \begin{array}{l}
c_{i j} \in \mathrm{Hom}_{2} \text { for all } i, j \\
\\
c(x) x \equiv 0 \\
\\
c(x) \in \mathbb{S}_{+}^{d} \text { for all } x
\end{array}\right\} ;\right\} .\right\} . ~
\end{array}\right\}
$$

Examples of $c \in \mathscr{C}_{+}$:

- Take $A_{1} \in \operatorname{Skew}(d)$ and set

$$
c(x)=A_{1} x x^{\top} A_{1}^{\top}
$$

The set \mathscr{C}_{+}

$$
\mathscr{C}_{+}=\left\{\begin{array}{ll}
\left.\left.\left.c: \mathbb{R}^{d} \rightarrow \mathbb{S}^{d}: \begin{array}{l}
c_{i j} \in \mathrm{Hom}_{2} \text { for all } i, j \\
\\
c(x) x \equiv 0 \\
\\
c(x) \in \mathbb{S}_{+}^{d} \text { for all } x
\end{array}\right\} ;\right\} .\right\} . ~
\end{array}\right\}
$$

Examples of $c \in \mathscr{C}_{+}$:

- Take $A_{1}, \ldots, A_{m} \in \operatorname{Skew}(d)$ and set

$$
c(x)=A_{1} x x^{\top} A_{1}^{\top}+A_{2} x x^{\top} A_{2}^{\top}+\cdots+A_{m} x x^{\top} A_{m}^{\top}
$$

The set \mathscr{C}_{+}

$$
\mathscr{C}_{+}=\left\{\begin{array}{ll}
\left.\left.\left.c: \mathbb{R}^{d} \rightarrow \mathbb{S}^{d}: \begin{array}{l}
c_{i j} \in \mathrm{Hom}_{2} \text { for all } i, j \\
\\
c(x) x \equiv 0 \\
\\
c(x) \in \mathbb{S}_{+}^{d} \text { for all } x
\end{array}\right\} ;\right\} .\right\} . ~
\end{array}\right\}
$$

Examples of $c \in \mathscr{C}_{+}$:

- Take $A_{1}, \ldots, A_{m} \in \operatorname{Skew}(d)$ and set

$$
c(x)=A_{1} x x^{\top} A_{1}^{\top}+A_{2} x x^{\top} A_{2}^{\top}+\cdots+A_{m} x x^{\top} A_{m}^{\top}
$$

- This leads to a convenient parameterization of a large class of elements of $\mathscr{C}_{+} \ldots$

The set \mathscr{C}_{+}

$$
\mathscr{C}_{+}=\left\{\begin{array}{ll}
\left.\left.\left.c: \mathbb{R}^{d} \rightarrow \mathbb{S}^{d}: \begin{array}{l}
c_{i j} \in \mathrm{Hom}_{2} \text { for all } i, j \\
\\
c(x) x \equiv 0 \\
\\
c(x) \in \mathbb{S}_{+}^{d} \text { for all } x
\end{array}\right\} ;\right\} .\right\} . ~
\end{array}\right\}
$$

Examples of $c \in \mathscr{C}_{+}$:

- Take $A_{1}, \ldots, A_{m} \in \operatorname{Skew}(d)$ and set

$$
c(x)=A_{1} x x^{\top} A_{1}^{\top}+A_{2} x x^{\top} A_{2}^{\top}+\cdots+A_{m} x x^{\top} A_{m}^{\top}
$$

- This leads to a convenient parameterization of a large class of elements of $\mathscr{C}_{+} \ldots$
- ... but is this exhaustive?

$$
c(x) \text { with } c_{i j}=c_{j i} \in \operatorname{Hom}_{2}
$$

$$
\Longleftrightarrow \quad \mathrm{BQ}(x, y):=y^{\top} c(x) y
$$

is a biquadratic form

$$
c(x) \text { with } c_{i j}=c_{j i} \in \operatorname{Hom}_{2}
$$

$$
c(x) x \equiv 0
$$

$\mathrm{BQ}(x, y):=y^{\top} c(x) y$ is a biquadratic form
$\mathrm{BQ}(x, x) \equiv 0$

The set \mathscr{C}_{+}

$c(x)$ with $c_{i j}=c_{j i} \in \operatorname{Hom}_{2}$
$c(x) x \equiv 0$
$c(x)$ positive semidefinite for all x

$\mathrm{BQ}(x, y):=y^{\top} c(x) y$ is a biquadratic form
$\Longleftrightarrow \quad \mathrm{BQ}(x, x) \equiv 0$
\Longleftrightarrow
$\mathrm{BQ}(x, y) \geq 0$ for all x, y

The set \mathscr{C}_{+}

$c(x)$ with $c_{i j}=c_{j i} \in \operatorname{Hom}_{2}$

$$
c(x) x \equiv 0
$$

$c(x)$ positive semidefinite for all x

$$
c(x)=\sum_{p=1}^{m} A_{p} x x^{\top} A_{p}^{\top}
$$

$\Longleftrightarrow \quad \mathrm{BQ}(x, y):=y^{\top} c(x) y$ is a biquadratic form
$\Longleftrightarrow \quad \mathrm{BQ}(x, x) \equiv 0$
\Longleftrightarrow
$\Longleftrightarrow \quad \mathrm{BQ}(x, y)=\sum_{p}\left(y^{\top} A_{p} x\right)^{2}$
$=$ sum of squares (SOS)

The set \mathscr{C}_{+}

$$
c(x) \text { with } c_{i j}=c_{j i} \in \operatorname{Hom}_{2}
$$

$$
c(x) x \equiv 0
$$

$c(x)$ positive semidefinite for all x

$$
c(x)=\sum_{p=1}^{m} A_{p} x x^{\top} A_{p}^{\top}
$$

$\Longleftrightarrow \quad \mathrm{BQ}(x, y):=y^{\top} c(x) y$ is a biquadratic form

$$
\Longleftrightarrow \quad \mathrm{BQ}(x, x) \equiv 0
$$

$\mathscr{C}_{+} \cong\{$ all nonnegative biquadratic forms with vanishing diagonal $\}$
$\stackrel{?}{=}\{$ all SOS biquadratic forms with vanishing diagonal $\}$

Nonnegativity vs. sum of squares

- Hilbert (1888): Every nonnegative homogeneous polynomial of degree k in d variables is SOS if and only if

$$
d=2 \quad \text { or } \quad k=2 \quad \text { or } \quad(d, k)=(3,4)
$$

Nonnegativity vs. sum of squares

- Hilbert (1888): Every nonnegative homogeneous polynomial of degree k in d variables is SOS if and only if

$$
d=2 \quad \text { or } \quad k=2 \quad \text { or } \quad(d, k)=(3,4) .
$$

- Choi (1975): Not every nonnegative biquadratic form is the sum of squares of bilinear forms.

Nonnegativity vs. sum of squares

- Hilbert (1888): Every nonnegative homogeneous polynomial of degree k in d variables is SOS if and only if

$$
d=2 \quad \text { or } \quad k=2 \quad \text { or } \quad(d, k)=(3,4) .
$$

- Choi (1975): Not every nonnegative biquadratic form is the sum of squares of bilinear forms.
- Quarez (2010) on biquadratic forms:
- Every nonnegative biquadratic form in $3+3$ variables with at least 11 zeros is SOS
- There exist nonnegative biquadratic forms in $4+4$ variables with infinitely many zeros that are not SOS

Nonnegativity vs. sum of squares

- Hilbert (1888): Every nonnegative homogeneous polynomial of degree k in d variables is SOS if and only if

$$
d=2 \quad \text { or } \quad k=2 \quad \text { or } \quad(d, k)=(3,4) .
$$

- Choi (1975): Not every nonnegative biquadratic form is the sum of squares of bilinear forms.
- Quarez (2010) on biquadratic forms:
- Every nonnegative biquadratic form in $3+3$ variables with at least 11 zeros is SOS
- There exist nonnegative biquadratic forms in $4+4$ variables with infinitely many zeros that are not SOS
- László (2010): There exist nonnegative, non-SOS biquadratic forms with vanishing diagonal in $6+6$ variables.

Nonnegativity vs. sum of squares

Theorem.
(i) If $d \leq 4$, then any nonnegative biquadratic form in $d+d$ variables vanishing on the diagonal is SOS. Equivalently, any $c \in \mathscr{C}_{+}$is of the form

$$
c(x)=\sum_{p=1}^{m} A_{p} x x^{\top} A_{p}^{\top} \quad \text { for some } \quad A_{1}, \ldots, A_{m} \in \operatorname{Skew}(d) .
$$

(ii) If $d \geq 6$, then there exist nonnegative biquadratic forms in $d+d$ variables vanishing on the diagonal that is not SOS. Equivalently, there exist $c \in \mathscr{C}_{+}$that is not of the above form.

Nonnegativity vs. sum of squares

Theorem.
(i) If $d \leq 4$, then any nonnegative biquadratic form in $d+d$ variables vanishing on the diagonal is SOS. Equivalently, any $c \in \mathscr{C}_{+}$is of the form

$$
c(x)=\sum_{p=1}^{m} A_{p} x x^{\top} A_{p}^{\top} \quad \text { for some } \quad A_{1}, \ldots, A_{m} \in \operatorname{Skew}(d) .
$$

(ii) If $d \geq 6$, then there exist nonnegative biquadratic forms in $d+d$ variables vanishing on the diagonal that is not SOS. Equivalently, there exist $c \in \mathscr{C}_{+}$that is not of the above form.

Open question: What happens for $d=5$?

Nonnegativity vs. sum of squares

Example. Let $d=6$. The map $c: \mathbb{R}^{d} \rightarrow \mathbb{S}^{d}$ with components

$$
\begin{array}{ll}
c_{11}=\left(x_{2}+x_{3}+x_{4}+x_{5}+x_{6}\right)^{2} & c_{33}=\left(x_{1}+x_{2}-x_{4}-x_{5}-x_{6}\right)^{2} \\
c_{12}=\left(x_{2}+x_{3}+x_{4}+x_{5}+x_{6}\right)\left(-x_{1}+x_{3}+x_{4}+x_{5}+x_{6}\right) & c_{34}=\left(x_{1}+x_{2}-x_{4}-x_{5}-x_{6}\right)\left(x_{1}+x_{2}+x_{3}-x_{5}-x_{6}\right) \\
c_{13}=\left(x_{2}+x_{3}+x_{4}+x_{5}+x_{6}\right)\left(-x_{1}-x_{2}+x_{4}+x_{5}+x_{6}\right) & c_{35}=\left(x_{1}+x_{2}-x_{4}-x_{5}-x_{6}\right)\left(x_{1}+x_{2}+x_{3}+x_{4}-x_{6}\right) \\
c_{14}=\left(x_{2}+x_{3}+x_{4}+x_{5}+x_{6}\right)\left(-x_{1}-x_{2}-x_{3}+x_{5}+x_{6}\right) & c_{36}=\left(x_{1}+x_{2}-x_{4}-x_{5}-x_{6}\right)\left(x_{1}+x_{2}+x_{3}+x_{4}+x_{5}\right) \\
c_{15}=\left(x_{2}+x_{3}+x_{4}+x_{5}+x_{6}\right)\left(-x_{1}-x_{2}-x_{3}-x_{4}+x_{6}\right) & c_{44}=\left(x_{1}+x_{2}+x_{3}-x_{5}-x_{6}\right)^{2} \\
c_{16}=\left(x_{2}+x_{3}+x_{4}+x_{5}+x_{6}\right)\left(-x_{1}-x_{2}-x_{3}-x_{4}-x_{5}\right) & c_{45}=\left(x_{1}+x_{2}+x_{3}-x_{5}-x_{6}\right)\left(x_{1}+x_{2}+x_{3}+x_{4}-x_{6}\right) \\
c_{22}=\left(x_{1}-x_{3}-x_{4}-x_{5}-x_{6}\right)^{2} & c_{46}=\left(x_{1}+x_{2}+x_{3}-x_{5}-x_{6}\right)\left(x_{1}+x_{2}+x_{3}+x_{4}+x_{5}\right) \\
c_{23}=\left(x_{1}-x_{3}-x_{4}-x_{5}-x_{6}\right)\left(x_{1}+x_{2}-x_{4}-x_{5}-x_{6}\right) & c_{55}=\left(x_{1}+x_{2}+x_{3}+x_{4}-x_{6}\right)^{2} \\
c_{24}=\left(x_{1}-x_{3}-x_{4}-x_{5}-x_{6}\right)\left(x_{1}+x_{2}+x_{3}-x_{5}-x_{6}\right) & c_{56}=\left(x_{1}+x_{2}+x_{3}+x_{4}-x_{6}\right)\left(x_{1}+x_{2}+x_{3}+x_{4}+x_{5}\right) \\
c_{25}=\left(x_{1}-x_{3}-x_{4}-x_{5}-x_{6}\right)\left(x_{1}+x_{2}+x_{3}+x_{4}-x_{6}\right) & c_{66}=\left(x_{1}+x_{2}+x_{3}+x_{4}+x_{5}\right)^{2}
\end{array}
$$

lies in \mathscr{C}_{+}but $y^{\top} c(x) y$ is not SOS.

Consequences of SOS: PP diffusions on the unit sphere

- Let X be PP diffusion on $\mathscr{S}^{d-1}=\left\{x \in \mathbb{R}^{d}:\|x\|=1\right\}$

Consequences of SOS: PP diffusions on the unit sphere

- Let X be PP diffusion on $\mathscr{S}^{d-1}=\left\{x \in \mathbb{R}^{d}:\|x\|=1\right\}$
- Such X are characterized by

$$
\mathscr{G} f(x)=(B x)^{\top} \nabla f(x)+\frac{1}{2} \operatorname{Tr}\left(c(x) \nabla^{2} f(x)\right)
$$

with $c \in \mathscr{C}_{+}$and $2 x^{\top} B x+\operatorname{Tr}(c(x)) \equiv 0$.

Consequences of SOS: PP diffusions on the unit sphere

- Let X be PP diffusion on $\mathscr{S}^{d-1}=\left\{x \in \mathbb{R}^{d}:\|x\|=1\right\}$
- Such X are characterized by

$$
\mathscr{G} f(x)=(B x)^{\top} \nabla f(x)+\frac{1}{2} \operatorname{Tr}\left(c(x) \nabla^{2} f(x)\right)
$$

with $c \in \mathscr{C}_{+}$and $2 x^{\top} B x+\operatorname{Tr}(c(x)) \equiv 0$.

- \mathscr{S}^{d-1} is an interesting state space for applications:
- It is compact: polynomial approximation works well
- It has no boundary: simulation works well
- Let $Z_{t}=\left[\begin{array}{lll}X_{t}^{(1)} & \cdots & X_{t}^{(n)}\end{array}\right]$ be valued in $\left(\mathscr{S}^{d-1}\right)^{n}, n \geq d$. Then

$$
\boldsymbol{C}_{t}=\boldsymbol{Z}_{t}^{\top} \boldsymbol{Z}_{t}
$$

is an $n \times n$ correlation matrix of rank at most d.

Consequences of SOS: PP diffusions on the unit sphere

Theorem. Let X be a PP diffusion on \mathscr{S}^{d-1}. Equivalent are:

- $y^{\top} c(x) y$ is SOS.
- X can be realized as the unique strong solution to the SDE

$$
d X_{t}=\left(\circ d Y_{t}\right) X_{t}
$$

where Y is correlated Brownian motion with drift on $\operatorname{Skew}(d)$:

$$
Y_{t}=A_{0} t+A_{1} W_{t}^{1}+\cdots+A_{m} W_{t}^{m}
$$

with $A_{0}, \ldots, A_{m} \in \operatorname{Skew}(d)$ and $m-\operatorname{dim} \operatorname{BM}\left(W^{1}, \ldots, W^{m}\right)$.

- \mathscr{G} can be expressed in Hörmander form as

$$
\mathscr{G}=V_{0}+\frac{1}{2} \sum_{p=1}^{m} V_{p}^{2},
$$

where V_{p} is the linear vector field $V_{p}(x)=A_{p} x, A_{p} \in \operatorname{Skew}(d)$.

Consequences of SOS: PP diffusions on the unit sphere

Corollary (existence of density). Let X be a PP diffusion on \mathscr{S}^{d-1} such that $y^{\top} c(x) y$ is SOS. The following are equivalent:
(i) $X_{t}(t>0)$ has a smooth density w.r.t. area measure on \mathscr{S}^{d-1}
(ii) $\operatorname{Lie}\left\{A_{1}, \ldots, A_{m}\right\}=\operatorname{Skew}(d)$

Conclusion

- (PP) processes can be used to build flexible and tractable models
- Geometry of the state space crucially affects factor dynamics
- The unit ball is an interesting example of a compact state space allowing for rich factor dynamics
- (PP) diffusions with the SOS property ...
- ... can be completely parameterized
- ... can be represented as strong solutions to SDE
- . . . admit simple conditions for existence of smooth density

Thank you!

