Polynomial Preserving Diffusions on the Unit Ball

Martin Larsson

Department of Mathematics, ETH Zürich

joint work with Sergio Pulido

Imperial–ETH Workshop on Mathematical Finance 4 March 2015

Polynomial models in finance

Factor models

Arbitrage-free pricing usually boils down to calculating conditional expectations:

 $\mathsf{Price}(t) = \mathbb{E}\left[\mathsf{Payoff}(T) \mid \mathscr{F}_t\right]$

Factor models

Arbitrage-free pricing usually boils down to calculating conditional expectations:

 $\mathsf{Price}(t) = \mathbb{E}\left[\mathsf{Payoff}(T) \mid \mathscr{F}_t\right]$

Factor model:

$$\mathsf{Payoff}(T) = f(X_T)$$

where X is a factor process, f is a deterministic function

Factor models

Arbitrage-free pricing usually boils down to calculating conditional expectations:

 $\mathsf{Price}(t) = \mathbb{E}\left[\mathsf{Payoff}(T) \mid \mathscr{F}_t\right]$

Factor model:

$$\mathsf{Payoff}(T) = f(X_T)$$

where X is a factor process, f is a deterministic function

Task: Find X and f to get tractable yet flexible class of models

- Markov process X with state space $E \subseteq \mathbb{R}^d$
- (Extended) generator \mathscr{G} given by

$$\mathscr{G}f(x) = b(x)^{\top} \nabla f(x) + \frac{1}{2} \operatorname{Tr} (a(x) \nabla^2 f(x))$$

- Markov process X with state space $E \subseteq \mathbb{R}^d$
- (Extended) generator \mathscr{G} given by

$$\mathscr{G}f(x) = b(x)^{\top} \nabla f(x) + \frac{1}{2} \operatorname{Tr} (a(x) \nabla^2 f(x))$$

Definition. X is called **Polynomial Preserving (PP)** if

$$\mathscr{G}\operatorname{Pol}_n(E)\subseteq\operatorname{Pol}_n(E)\qquad ext{for all}\qquad n\in\mathbb{N},$$

where $\operatorname{Pol}_n(E) = \{ \text{polynomials on } E \text{ of degree } \leq n \}.$

- Markov process X with state space $E \subseteq \mathbb{R}^d$
- (Extended) generator \mathscr{G} given by

$$\mathscr{G}f(x) = b(x)^{\top} \nabla f(x) + \frac{1}{2} \operatorname{Tr} (a(x) \nabla^2 f(x))$$

Definition. X is called **Polynomial Preserving (PP)** if

$${\mathscr{G}}\operatorname{Pol}_n(E)\subseteq\operatorname{Pol}_n(E) \qquad ext{for all} \qquad n\in\mathbb{N},$$

where $\operatorname{Pol}_n(E) = \{ \text{polynomials on } E \text{ of degree } \leq n \}.$

Lemma. X is (PP) if and only if

$$b_i \in \operatorname{Pol}_1(E)$$
 and $a_{ij} \in \operatorname{Pol}_2(E)$

▶ By definition of (PP), *G* restricts to an operator *G*|_{Pol_n(E)} on the finite-dimensional vector space Pol_n(E)

- ▶ By definition of (PP), 𝔅 restricts to an operator 𝔅|_{Pol_n(E)} on the finite-dimensional vector space Pol_n(E)
- Let h_1, \ldots, h_N be a basis for $\operatorname{Pol}_n(E)$, write

$$H(x) = (h_1(x), \ldots, h_N(x))^\top$$

▶ By definition of (PP), 𝒢 restricts to an operator 𝒢|_{Pol_n(E)} on the finite-dimensional vector space Pol_n(E)

• Let h_1, \ldots, h_N be a basis for $\operatorname{Pol}_n(E)$, write

$$H(x) = (h_1(x), \ldots, h_N(x))^\top$$

Coordinate representations:

$$p(x) = H(x)^{\top} \vec{p} \qquad \vec{p} \in \mathbb{R}^{N}$$
$$\mathscr{G}p(x) = H(x)^{\top} G \vec{p} \qquad G \in \mathbb{R}^{N \times N}$$

▶ By definition of (PP), 𝒢 restricts to an operator 𝒢|_{Pol_n(E)} on the finite-dimensional vector space Pol_n(E)

• Let h_1, \ldots, h_N be a basis for $\operatorname{Pol}_n(E)$, write

$$H(x) = (h_1(x), \ldots, h_N(x))^\top$$

Coordinate representations:

$$p(x) = H(x)^{\top} \vec{p} \qquad \vec{p} \in \mathbb{R}^{N}$$

$$\mathscr{G}p(x) = H(x)^{\top} G \vec{p} \qquad G \in \mathbb{R}^{N \times N}$$

Key consequence:

$$\mathbb{E}\left[p(X_T) \mid \mathscr{F}_t\right] = e^{(T-t)\mathscr{G}} p(X_t) \qquad (\text{formally})$$
$$= H(X_t)^\top e^{(T-t)\mathscr{G}} \vec{p}$$

▶ By definition of (PP), 𝒢 restricts to an operator 𝒢|_{Pol_n(E)} on the finite-dimensional vector space Pol_n(E)

• Let h_1, \ldots, h_N be a basis for $\operatorname{Pol}_n(E)$, write

$$H(x) = (h_1(x), \ldots, h_N(x))^\top$$

Coordinate representations:

$$p(x) = H(x)^{\top} \vec{p} \qquad \vec{p} \in \mathbb{R}^{N}$$
$$\mathscr{G}p(x) = H(x)^{\top} G \vec{p} \qquad G \in \mathbb{R}^{N \times N}$$

Key consequence:

$$\mathbb{E}\left[p(X_T) \mid \mathscr{F}_t\right] = e^{(T-t)\mathscr{G}} p(X_t) \qquad \text{(formally)}$$
$$= H(X_t)^\top e^{(T-t)\mathscr{G}} \vec{p}$$

 This only involves a matrix exponential as opposed to solving a PDE which leads to tractable pricing models

Examples:

Affine diffusions

Examples:

Affine diffusions

▶ Pearson diffusions (Forman and Sørensen, 2008), $E \subset \mathbb{R}$:

$$\mathrm{d}X_t = (\beta + bX_t)\mathrm{d}t + \sqrt{\alpha + aX_t + AX_t^2}\mathrm{d}W_t$$

Examples:

Affine diffusions

▶ Pearson diffusions (Forman and Sørensen, 2008), $E \subset \mathbb{R}$:

$$\mathrm{d}X_t = (\beta + bX_t)\mathrm{d}t + \sqrt{\alpha + aX_t + AX_t^2}\mathrm{d}W_t$$

More generally:

Existence theory for polynomial preserving diffusions is available when *E* is a **basic closed semialgebraic set**:

$$E = \{x \in \mathbb{R}^d : p_1(x) \ge 0, \dots, p_m(x) \ge 0\}$$

where $p_1, \ldots, p_m \in Pol(\mathbb{R}^d)$. See Filipović & L. (2014).

Literature

- Wong (1964)
- Mazet (1997)
- Zhou (2003)
- Forman and Sørensen (2008)
- Cuchiero, Keller-Ressel, Teichmann (2012)
- Filipović, Gourier, Mancini (2013)
- Filipović, L. (2014)
- Bakry, Orevkov, Zani (2014)
- Filipović, L., Trolle (2014)
- ▶ ...

(PP) diffusions on the unit ball

The geometry of the state space restricts factor dynamics

The geometry of the state space restricts factor dynamics

Example. Affine diffusions on $E = \mathbb{R}^d_+$:

$$dX_t = (b + BX_t)dt + \begin{pmatrix} \sigma_1 \sqrt{X_{1t}} & 0 & \cdots & 0 \\ 0 & \sigma_2 \sqrt{X_{2t}} & & \vdots \\ \vdots & & \ddots & 0 \\ 0 & \cdots & 0 & \sigma_d \sqrt{X_{dt}} \end{pmatrix} dW_t$$

Geometry of *E* forces $\langle X_i, X_j \rangle \equiv 0$ for $i \neq j$.

The geometry of the state space restricts factor dynamics

Example. Affine diffusions on $E = \mathbb{R}^d_+$:

$$dX_t = (b + BX_t)dt + \begin{pmatrix} \sigma_1 \sqrt{X_{1t}} & 0 & \cdots & 0 \\ 0 & \sigma_2 \sqrt{X_{2t}} & & \vdots \\ \vdots & & \ddots & 0 \\ 0 & \cdots & 0 & \sigma_d \sqrt{X_{dt}} \end{pmatrix} dW_t$$

Geometry of *E* forces $\langle X_i, X_j \rangle \equiv 0$ for $i \neq j$.

Compact state spaces useful for polynomial approximation

The geometry of the state space restricts factor dynamics

Example. Affine diffusions on $E = \mathbb{R}^d_+$:

$$dX_t = (b + BX_t)dt + \begin{pmatrix} \sigma_1 \sqrt{X_{1t}} & 0 & \cdots & 0 \\ 0 & \sigma_2 \sqrt{X_{2t}} & & \vdots \\ \vdots & & \ddots & 0 \\ 0 & \cdots & 0 & \sigma_d \sqrt{X_{dt}} \end{pmatrix} dW_t$$

Geometry of *E* forces $\langle X_i, X_j \rangle \equiv 0$ for $i \neq j$.

Compact state spaces useful for polynomial approximation

Theorem. If E is compact and X is an E-valued affine diffusion, then X is deterministic.

PP diffusions on the unit ball

Example.

$$dX_t = -X_t \, dt + \sqrt{1 - \|X_t\|^2} \, dW_t$$

where $W = (W^1, \ldots, W^d)$ is *d*-dimensional BM.

PP diffusions on the unit ball

Example.

$$dX_t = -X_t \, dt + \sqrt{1 - \|X_t\|^2} \, dW_t$$

where $W = (W^1, \ldots, W^d)$ is *d*-dimensional BM.

But richer diffusion dynamics is possible:

PP diffusions on the unit ball

Theorem. X is a PP diffusion on the unit ball if and only if b(x) = b + Bx and $a(x) = (1 - ||x||^2)\alpha + c(x)$ for some $b \in \mathbb{R}^d$, $B \in \mathbb{R}^{d \times d}$, $\alpha \in \mathbb{S}^d_+$, and $c \in \mathscr{C}_+$ such that $b^\top x + x^\top Bx + \frac{1}{2} \operatorname{Tr}(c(x)) \leq 0$ for all $x \in \mathscr{S}^{d-1}$.

Here \mathscr{S}^{d-1} is the unit sphere in $\mathbb{R}^d,$ and

$$\mathscr{C}_{+} = \left\{ egin{array}{ll} c: \mathbb{R}^d o \mathbb{S}^d & : & c_{ij} \in \operatorname{Hom}_2 ext{ for all } i,j \ c(x)x \equiv 0 \ c(x) \in \mathbb{S}^d_+ ext{ for all } x \end{array}
ight\}$$

$$\mathscr{C}_{+} = \left\{ \begin{array}{ll} c : \mathbb{R}^{d} \to \mathbb{S}^{d} : c(x)x \equiv 0 \\ c(x) \in \mathbb{S}^{d}_{+} \text{ for all } x \end{array} \right\}$$

Examples of $c \in \mathscr{C}_+$:

• Take $A_1 \in \text{Skew}(d)$ and set

$$c(x) = A_1 x x^\top A_1^\top$$

$$\mathscr{C}_{+} = \left\{ \begin{array}{ll} c : \mathbb{R}^{d} \to \mathbb{S}^{d} : c(x)x \equiv 0 \\ c(x) \in \mathbb{S}^{d}_{+} \text{ for all } x \end{array} \right\}$$

Examples of $c \in \mathscr{C}_+$:

• Take
$$A_1, \ldots, A_m \in \operatorname{Skew}(d)$$
 and set

$$c(x) = A_1 x x^{\top} A_1^{\top} + A_2 x x^{\top} A_2^{\top} + \dots + A_m x x^{\top} A_m^{\top}$$

$$\mathscr{C}_{+} = \left\{ \begin{array}{ll} c : \mathbb{R}^{d} \to \mathbb{S}^{d} : c(x)x \equiv 0 \\ c(x) \in \mathbb{S}^{d}_{+} \text{ for all } x \end{array} \right\}$$

Examples of $c \in \mathscr{C}_+$:

• Take
$$A_1, \ldots, A_m \in \text{Skew}(d)$$
 and set

$$c(x) = A_1 x x^{\top} A_1^{\top} + A_2 x x^{\top} A_2^{\top} + \dots + A_m x x^{\top} A_m^{\top}$$

► This leads to a convenient parameterization of a large class of elements of C₊...

$$\mathscr{C}_{+} = \left\{ \begin{array}{ll} c : \mathbb{R}^{d} \to \mathbb{S}^{d} : c(x)x \equiv 0 \\ c(x) \in \mathbb{S}^{d}_{+} \text{ for all } x \end{array} \right\}$$

Examples of $c \in \mathscr{C}_+$:

• Take
$$A_1, \ldots, A_m \in \operatorname{Skew}(d)$$
 and set

$$c(x) = A_1 x x^{\top} A_1^{\top} + A_2 x x^{\top} A_2^{\top} + \dots + A_m x x^{\top} A_m^{\top}$$

- ► This leads to a convenient parameterization of a large class of elements of C₊ ...
- ... but is this exhaustive?

c(x) with $c_{ij} = c_{ji} \in \operatorname{Hom}_2$

 $\iff BQ(x, y) := y^{\top} c(x) y$ is a biquadratic form

$$c(x)$$
 with $c_{ij} = c_{ji} \in \text{Hom}_2$ \iff $BQ(x, y) := y^{\top} c(x)y$
is a biguadratic form

$$c(x)x \equiv 0 \qquad \qquad \Longleftrightarrow \qquad \operatorname{BQ}(x,x) \equiv 0$$

c(x) with $c_{ij} = c_{ji} \in \text{Hom}_2$ \iff $BQ(x, y) := y^{\top} c(x) y$ is a biguadratic form

$$c(x)x \equiv 0 \qquad \qquad \Longleftrightarrow \qquad \operatorname{BQ}(x,x) \equiv 0$$

c(x) positive semidefinite for all $x \iff BQ(x, y) \ge 0$ for all x, y

c(x) with $c_{ij} = c_{ji} \in \text{Hom}_2$ \iff $BQ(x, y) := y^{\top} c(x) y$ is a biguadratic form

$$c(x)x \equiv 0 \qquad \qquad \Longleftrightarrow \qquad \operatorname{BQ}(x,x) \equiv 0$$

c(x) positive semidefinite for all x

$$c(x) = \sum_{p=1}^{m} A_p x x^\top A_p^\top \qquad \qquad \Longleftrightarrow \qquad \operatorname{BQ}(x, y) = \sum_p (y^\top A_p x)^2$$

 \iff

$$=$$
 sum of squares (SOS)

 $BQ(x, y) \ge 0$ for all x, y

- c(x) with $c_{ij} = c_{ji} \in \text{Hom}_2$ \iff $BQ(x, y) := y^{\top} c(x) y$ is a biguadratic form
- $c(x)x \equiv 0 \qquad \qquad \Longleftrightarrow \qquad \operatorname{BQ}(x,x) \equiv 0$
- c(x) positive semidefinite for all $x \iff \operatorname{BQ}(x,y) \ge 0$ for all x, y
- $c(x) = \sum_{p=1}^{m} A_p x x^{\top} A_p^{\top} \qquad \Longleftrightarrow \qquad \operatorname{BQ}(x, y) = \sum_p (y^{\top} A_p x)^2 \\ = \text{ sum of squares } (SOS)$

 $\mathscr{C}_{+} \cong \{ \text{all nonnegative biquadratic forms with vanishing diagonal} \}$ $\stackrel{?}{=} \{ \text{all SOS biquadratic forms with vanishing diagonal} \}$

Nonnegativity vs. sum of squares

Hilbert (1888): Every nonnegative homogeneous polynomial of degree k in d variables is SOS if and only if

$$d = 2$$
 or $k = 2$ or $(d, k) = (3, 4)$.

Nonnegativity vs. sum of squares

Hilbert (1888): Every nonnegative homogeneous polynomial of degree k in d variables is SOS if and only if

$$d = 2$$
 or $k = 2$ or $(d, k) = (3, 4)$.

 Choi (1975): Not every nonnegative biquadratic form is the sum of squares of bilinear forms.

Hilbert (1888): Every nonnegative homogeneous polynomial of degree k in d variables is SOS if and only if

d = 2 or k = 2 or (d, k) = (3, 4).

- Choi (1975): Not every nonnegative biquadratic form is the sum of squares of bilinear forms.
- Quarez (2010) on biquadratic forms:
 - Every nonnegative biquadratic form in 3 + 3 variables with at least 11 zeros is SOS
 - There exist nonnegative biquadratic forms in 4 + 4 variables with infinitely many zeros that are not SOS

Hilbert (1888): Every nonnegative homogeneous polynomial of degree k in d variables is SOS if and only if

d = 2 or k = 2 or (d, k) = (3, 4).

- Choi (1975): Not every nonnegative biquadratic form is the sum of squares of bilinear forms.
- Quarez (2010) on biquadratic forms:
 - Every nonnegative biquadratic form in 3 + 3 variables with at least 11 zeros is SOS
 - There exist nonnegative biquadratic forms in 4 + 4 variables with infinitely many zeros that are not SOS
- László (2010): There exist nonnegative, non-SOS biquadratic forms with vanishing diagonal in 6 + 6 variables.

Theorem.

(i) If $d \le 4$, then any nonnegative biquadratic form in d + d variables vanishing on the diagonal is **SOS**. Equivalently, any $c \in \mathscr{C}_+$ is of the form

$$c(x) = \sum_{p=1}^{m} A_p x x^{\top} A_p^{\top}$$
 for some $A_1, \ldots, A_m \in \operatorname{Skew}(d)$.

(ii) If $d \ge 6$, then there exist nonnegative biquadratic forms in d + d variables vanishing on the diagonal that is not **SOS**. Equivalently, there exist $c \in \mathscr{C}_+$ that is not of the above form.

Theorem.

(i) If $d \le 4$, then any nonnegative biquadratic form in d + d variables vanishing on the diagonal is **SOS**. Equivalently, any $c \in \mathscr{C}_+$ is of the form

$$c(x) = \sum_{p=1}^{m} A_p x x^{\top} A_p^{\top}$$
 for some $A_1, \ldots, A_m \in \operatorname{Skew}(d)$.

(ii) If d ≥ 6, then there exist nonnegative biquadratic forms in d + d variables vanishing on the diagonal that is not SOS. Equivalently, there exist c ∈ C₊ that is not of the above form.

Open question: What happens for d = 5?

Example. Let d = 6. The map $c : \mathbb{R}^d \to \mathbb{S}^d$ with components

$$\begin{split} c_{11} &= (x_2 + x_3 + x_4 + x_5 + x_6)^2 \\ c_{12} &= (x_2 + x_3 + x_4 + x_5 + x_6)(-x_1 + x_3 + x_4 + x_5 + x_6) \\ c_{13} &= (x_2 + x_3 + x_4 + x_5 + x_6)(-x_1 - x_2 + x_4 + x_5 + x_6) \\ c_{14} &= (x_2 + x_3 + x_4 + x_5 + x_6)(-x_1 - x_2 - x_3 - x_4 + x_6) \\ c_{15} &= (x_2 + x_3 + x_4 + x_5 + x_6)(-x_1 - x_2 - x_3 - x_4 + x_6) \\ c_{16} &= (x_2 + x_3 + x_4 + x_5 + x_6)(-x_1 - x_2 - x_3 - x_4 - x_5) \\ c_{22} &= (x_1 - x_3 - x_4 - x_5 - x_6)^2 \\ c_{23} &= (x_1 - x_3 - x_4 - x_5 - x_6)(x_1 + x_2 - x_4 - x_5 - x_6) \\ c_{24} &= (x_1 - x_3 - x_4 - x_5 - x_6)(x_1 + x_2 + x_3 - x_5 - x_6) \\ c_{25} &= (x_1 - x_3 - x_4 - x_5 - x_6)(x_1 + x_2 + x_3 + x_4 - x_6) \\ c_{26} &= (x_1 - x_3 - x_4 - x_5 - x_6)(x_1 + x_2 + x_3 + x_4 - x_6) \\ c_{26} &= (x_1 - x_3 - x_4 - x_5 - x_6)(x_1 + x_2 + x_3 + x_4 + x_5) \end{split}$$

$$\begin{aligned} c_{33} &= \left(x_1 + x_2 - x_4 - x_5 - x_6\right)^2 \\ c_{34} &= \left(x_1 + x_2 - x_4 - x_5 - x_6\right) \left(x_1 + x_2 + x_3 - x_5 - x_6\right) \\ c_{35} &= \left(x_1 + x_2 - x_4 - x_5 - x_6\right) \left(x_1 + x_2 + x_3 + x_4 - x_6\right) \\ c_{36} &= \left(x_1 + x_2 - x_4 - x_5 - x_6\right) \left(x_1 + x_2 + x_3 + x_4 + x_5\right) \\ c_{44} &= \left(x_1 + x_2 + x_3 - x_5 - x_6\right) \left(x_1 + x_2 + x_3 + x_4 - x_6\right) \\ c_{45} &= \left(x_1 + x_2 + x_3 - x_5 - x_6\right) \left(x_1 + x_2 + x_3 + x_4 - x_6\right) \\ c_{55} &= \left(x_1 + x_2 + x_3 + x_4 - x_6\right)^2 \\ c_{56} &= \left(x_1 + x_2 + x_3 + x_4 - x_6\right) \left(x_1 + x_2 + x_3 + x_4 + x_5\right) \\ c_{66} &= \left(x_1 + x_2 + x_3 + x_4 - x_6\right) \left(x_1 + x_2 + x_3 + x_4 + x_5\right) \\ c_{66} &= \left(x_1 + x_2 + x_3 + x_4 + x_5\right)^2 \end{aligned}$$

lies in \mathscr{C}_+ but $y^{\top}c(x)y$ is not **SOS**.

• Let X be PP diffusion on
$$\mathscr{S}^{d-1} = \{x \in \mathbb{R}^d : ||x|| = 1\}$$

• Let X be PP diffusion on
$$\mathscr{S}^{d-1} = \{x \in \mathbb{R}^d : ||x|| = 1\}$$

Such X are characterized by

$$\mathscr{G}f(x) = (Bx)^{\top} \nabla f(x) + \frac{1}{2} \operatorname{Tr}(c(x) \nabla^2 f(x))$$

with $c \in \mathscr{C}_+$ and $2x^\top Bx + \operatorname{Tr}(c(x)) \equiv 0$.

• Let X be PP diffusion on
$$\mathscr{S}^{d-1} = \{x \in \mathbb{R}^d : ||x|| = 1\}$$

Such X are characterized by

$$\mathscr{G}f(x) = (Bx)^{\top} \nabla f(x) + \frac{1}{2} \operatorname{Tr}(c(x) \nabla^2 f(x))$$

with $c \in \mathscr{C}_+$ and $2x^\top Bx + \operatorname{Tr}(c(x)) \equiv 0$.

▶ \mathscr{S}^{d-1} is an interesting state space for applications:

- It is compact: polynomial approximation works well
- It has no boundary: simulation works well

• Let
$$Z_t = [X_t^{(1)} \cdots X_t^{(n)}]$$
 be valued in $(\mathscr{S}^{d-1})^n$, $n \ge d$. Then

$$C_t = Z_t^{\top} Z_t$$

is an $n \times n$ correlation matrix of rank at most d.

Theorem. Let X be a PP diffusion on \mathscr{S}^{d-1} . Equivalent are:

• $y^{\top}c(x)y$ is **SOS**.

X can be realized as the unique strong solution to the SDE

$$dX_t = (\circ dY_t) X_t,$$

where Y is correlated Brownian motion with drift on Skew(d):

$$Y_t = A_0 t + A_1 W_t^1 + \dots + A_m W_t^m$$

with $A_0, \ldots, A_m \in \text{Skew}(d)$ and *m*-dim BM (W^1, \ldots, W^m) .

G can be expressed in Hörmander form as

$$\mathscr{G}=V_0+\frac{1}{2}\sum_{p=1}^m V_p^2,$$

where V_p is the linear vector field $V_p(x) = A_p x$, $A_p \in \text{Skew}(d)$.

Corollary (existence of density). Let X be a PP diffusion on \mathscr{S}^{d-1} such that $y^{\top}c(x)y$ is **SOS**. The following are equivalent:

(i) X_t (t > 0) has a smooth density w.r.t. area measure on \mathscr{S}^{d-1}

(ii) $\operatorname{Lie}\{A_1,\ldots,A_m\} = \operatorname{Skew}(d)$

Conclusion

- (PP) processes can be used to build flexible and tractable models
- Geometry of the state space crucially affects factor dynamics
- The unit ball is an interesting example of a compact state space allowing for rich factor dynamics
- (PP) diffusions with the SOS property ...
 - ... can be completely parameterized
 - ... can be represented as strong solutions to SDE
 - ... admit simple conditions for existence of smooth density

Thank you!